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We investigate a class of granular materials characterized by the possibility of interlocking between the
particles. The interlocking is modeled by its effect through rolling resistance depending on relative rotation and
normal force at the contact points and involving a single parameter analogous to the sliding friction coefficient.
The model, which is introduced in the framework of the contact dynamics method, is applied to simulate the
simple shear of a large granular sample. We present a detailed analysis regarding the influence of rolling and
sliding friction parameters on the macroscopic response in terms of shear strength, fabric properties, and force
transmission. Interestingly, two distinct regimes can be distinguished in which the steady-state shear strength is
controlled by either rolling resistance or sliding friction. The relative contributions of rolling and sliding
contacts to the shear strength are consistent with the same two regimes. Interlocking strongly affects the force
network by enhancing the arching effect and thus increasing the relative importance of weak contact forces and
torques, which is reflected in a decreasing power-law probability distribution of the contact forces and torques
below the mean. Due to the combined effect of friction and interlocking, the force-carrying backbone takes an
increasingly columnar aspect involving a low fraction of particles. Our data suggest that the nature of the weak
contact network is strongly affected by the formation of these columns of particles which do not need to be
propped laterally. In particular, in the limit of high rolling resistance and sliding friction, the role of the weak
network of contacts is no longer to prop the force chains, but, like the strong contact network, to actively
sustain the deviatoric load imposed on the system.
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I. INTRODUCTION

Granular materials are characterized by a shear strength
depending on both the stress level and density. As a result of
the quasirigidity of the grains and Coulomb friction, the
maximum shear stress � on a slip plane varies proportionally
to the normal stress �, so that the strength is generally de-
scribed by the ratio �=� /� which depends only on the solid
fraction. Only in a steady state reached after sufficiently long
shearing can, this ratio be considered as a material property.
This state, often called the “critical state” in soil mechanics,
is thus characterized by a critical solid fraction � and a �nor-
malized� shear strength �*, also described as the coefficient
of internal friction of the granular material �1,2�.

Unlike solid friction, which is a surface property, the
shear strength �* represents a bulk property resulting from a
collective process, which depends on the nature of grain in-
teractions and their geometrical arrangement. However, the
link between shear strength and grain interactions is still a
largely open issue. Early models of shear strength in granular
media were based on the assumption that the dominant
mechanism of failure and dissipation at the contact scale is
sliding. These models predicted that �* increased indefi-
nitely with the coefficient of sliding friction �s between the
grains �3–5�. However, it was later found, both experimen-
tally and theoretically, that �* increases indeed with �s but
saturates rapidly to a limit value that is independent of �s

�6,7�. This behavior highlights the fact that, even though slid-
ing friction is the dominant source of dissipation in plastic
flow of granular materials, the major grain-scale mode of
deformation is the rolling of grains over each other which
keeps �* at a low level. Recent numerical simulations indi-
cate that, in granular media composed of spherical grains,
sliding occurs only at a small proportion ��10% � of con-
tacts, and these sliding contacts are basically those carrying
weak normal forces �8,9�.

These observations suggest that the shear strength should
be strongly affected when the relative rolling is restrained by
a mechanism of interlocking between the grains. Weak roll-
ing resistance can result from interactions between grain sur-
face irregularities or asperities. Larger rolling resistance may
be due to interlocking between grains of nonconvex or an-
gular shapes often occurring in geomaterials �gouge material,
ballast, etc.� or in materials with dendritic grain surface
structures �flake-shaped metallic powder, snowflakes, etc.�.
The presence of a cementing material between grains can be
another cause of interlocking. In all cases, independently of
the underlying mechanisms, interlocking implies rolling re-
sistance between the grains.

In order to be able to simulate real materials by means of
discrete element methods, several authors have specifically
incorporated rolling resistance at the level of contact interac-
tions between grains �10–16�. Other authors have simply hin-
dered grain rotations. This approach can be a useful trick to
achieve very high values of �* whilst using spherical-shape
particles �17–20�. Even though the practical interest of intro-
ducing rolling resistance is evident, the joint effect of sliding
friction and rolling resistance on the macroscopic behavior*estrada@gm.univ-montp2.fr
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of granular materials has not been systematically investi-
gated.

In this paper, we use a model of interlocking in the frame-
work of the contact dynamics method in order to study the
steady-state strength properties and microstructure of sheared
granular media. In our model, the interlocking between
grains is introduced through a rolling friction law relating the
relative rotation of the grains with a contact torque which is
proportional to the normal force. This law involves thus a
rolling friction coefficient �r analogous to the sliding friction
coefficient �s. Polydisperse two-dimensional �2D� granular
samples were sheared under simple shear boundary condi-
tions and analyzed in the steady state for a broad range of
friction parameters �s and �r in terms of shear strength,
fabric properties and force transmission. An interesting find-
ing of this work is that the saturation of �* occurs also as a
function of �r with a saturation value that increases with �s,
and, symmetrically, as a function of �s with a saturation
value increasing with �r. As a result, two distinct regimes
can be distinguished in which �* is controlled by either �s or
�r. We consider in detail the effect of interlocking on the
microstructure and force transmission in these two regimes.

The outline of this paper is as follows. We first describe,
in Sec. II, the numerical method, system characteristics, and
loading parameters. In Sec. III, we present a parametric study
of the shear strength as a function of the two friction coeffi-
cients. In Sec. IV, we focus on the solid fraction and structure
of the force-carrying backbone. Section V is devoted to the
force distributions and the influence of rolling friction on the
bimodal behavior of our granular system. We conclude, in
Sec. VI, with a summary of the main results and a brief
discussion about the extensions of this work.

II. MODEL DESCRIPTION

A. Contact dynamics method

The simulations were carried out using the contact dy-
namics method, which is suitable for simulating large assem-
blies of rigid particles �21–24�. This method is based on a
nonsmooth formulation of the equations of motion in which
the accelerations are replaced by possible velocity jumps re-
sulting from collisions. The frictional and collisional interac-
tions are described as “complementarity relations” between
the relative velocities and the corresponding forces at the
contact points.

In the normal direction, the condition of impenetrability
of the grains at a contact, i.e., when the gap �=0, implies the
following complementary relation:

un = 0 ⇒ fn � 0,

un � 0 ⇒ fn = 0, �1�

where un is the relative normal velocity and fn is the normal
contact force. This relation, called Signorini’s conditions for
velocities, is shown as a graph in Fig. 1�a�. Remark that this
relation cannot be reduced to a �mono�valued functional de-
pendence between the two variables. In the same way, in the
tangential direction, the Coulomb friction law can be de-

scribed by the following complementary relation:

ut � 0 ⇒ f t = − �sfn,

ut = 0 ⇒ − �sfn 	 f t 	 �sfn,

ut � 0 ⇒ f t = �sfn, �2�

where ut is the sliding velocity and f t is the friction force.
Figure 1�b� displays Coulomb’s conditions as a graph. Like
Signorini’s relation, this is a nonsmooth contact law in the
sense that it is a set-valued function.

Both contact laws are implemented within the contact dy-
namics method without introducing further regularizing or
damping parameters. The formulation of the contact laws at
the velocity level implies an implicit time-stepping scheme
and the determination of the forces and velocities at each
time step through an iterative procedure similar to a Gauss-
Seidel scheme �21,23–27�.

B. Rolling resistance

In order to introduce interlocking between grains, the idea
is to replace the effect of grain shape �nonconvex or angular
shapes� by a contact law allowing for rolling resistance. The
local kinematic variable is the relative angular velocity 
r at
the contacts between grains. For two disks with angular ve-
locities 
i and 
 j, we have


r
ij = 
i − 
 j . �3�

Interlocking between the grains i and j corresponds to 
r
ij

=0. From a dynamic point of view, this condition requires
the transmission of a torque M at the contact point. This is
analogous to the nonsliding condition ut=0 which requires
the activation of the friction force f t �vertical branch of Cou-
lomb’s law in Fig. 1�. In the same way, the rolling resistance
corresponds to a threshold Mc on the contact torque. Hence,
by analogy with Coulomb’s friction law, we introduce the
following complementarity relation between 
r and M:


r � 0 ⇒ M = − Mc,


r = 0 ⇒ − Mc 	 M 	 Mc,


r � 0 ⇒ M = Mc. �4�

To push this analogy further, let us compare the force
balance for a block and a disk of radius R placed on an

(b)(a)

FIG. 1. �a� Signorini’s conditions relating the normal force fn

and the relative normal velocity un. �b� Coulomb friction law relat-
ing the tangential force f t and the relative tangential veolcity ut.
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inclined plane; see Fig. 2. The stability of the block is due to
the friction force f t=mg sin ���smg cos �. Sliding occurs
for �=�s, for which f t=�sfn. The stability of the disk, with
respect to rolling, can only be ensured by a contact torque M
balancing exactly the moment of its weight about the contact
point M =mgR sin ��Mc. Assuming that, as for sliding, roll-
ing occurs for an inclination �=�r of the plane, we get Mc
=�rRmg cos �r=�rRfn, where �r=tan �r is the coefficient
of rolling friction. With this choice, the complementarity re-
lation defining the rolling friction law between two grains of
radii Ri and Rj becomes


r � 0 ⇒ M = − �r�fn,


r = 0 ⇒ − �r�fn 	 M 	 �r�fn,


r � 0 ⇒ M = �r�fn, �5�

where �=Ri+Rj. The graph of this relation is displayed in
Fig. 3.

The scaling of the rolling threshold Mc with � leads to
comparable values of �r and �s. In the example of the in-
clined plane illustrated in Fig. 2, �s=�r implies that sliding
of the block and rolling of the disk begin for the same incli-
nation angle �s=�r.

Although this model is basically meant to isolate the ef-
fect of moment transfer between particles, a relevant ques-
tion is whether a rolling resistance proportional to the normal
force, as in relation �5�, can be identified with a real physical
mechanism in a noncohesive material. As weak rolling resis-
tance results from micro slidings between the asperities,

large rolling resistance can stem from a similar mechanism at
a larger scale, e.g., between particles with dendritic surfaces.
Indeed, strongly angular and nonconvex particles can inter-
lock and form several contact points, each resisting to sliding
through a Coulomb friction. The order of magnitude of Mc is
then proportional to the mean normal force fn between the
two particles, the coefficient of sliding friction at individual
contact points, and the typical separation distance between
these contact points.

We implemented the above rolling friction law in the
framework of the contact dynamics method. Below, we in-
vestigate in detail the influence of the two friction parameters
on the shear strength and force transmission.

C. Simple shear test

Our numerical samples are composed of 7500 disks with
diameters uniformly distributed by volume fractions between
0.6�d� and 2.4�d�, where �d� is the mean diameter. The par-
ticles are initially placed in a semiperiodic box 100�d� wide,
using a geometrical procedure �26,28�; see Fig. 4�a�. Next,
the packing is sheared by imposing to the upper wall a con-
stant horizontal velocity vwall and a constant pressure �wall;
see Fig. 4�b�. To avoid strain localization at the boundaries,
sliding and rolling are inhibited for the particles in contact
with the walls. The gravity is set to zero.

Since we are interested in the steady state behavior, the
samples are sheared and maintained in the steady state up to
a large cumulative shear strain =xwall /ywall=5, where xwall
is the horizontal displacement of the upper wall and ywall is
its vertical position. Figures 5�a� and 5�b� show the shear
ratio �wall /�wall, where �wall is the tangential stress at the
moving wall, and the normalized volume of the packing

(b)(a)

FIG. 2. Analogy between a block �a� and a disk of radius R �b�
placed on an inclined plane. The stability of the block is ensured by
the friction force f t; the stability of the disk, with respect to rolling,
is ensured by the contact moment M.

FIG. 3. Complementary relations defining the rolling friction
law. M is the torque and 
r is the relative angular velocity at the
contacts between grains.

FIG. 4. �Color online� �a� Snapshot of a portion of the packing
before shearing. �b� Schematic representation of the simple shear
test; the dashed lines represent periodic boundaries. vwall is the hori-
zontal velocity of the wall, �wall is the confining pressure, and �x� is
the averaged horizontal displacement of the particles
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V / �d�2 as a function of the shear strain  for three different
values of �s and �r. The packing is at the steady state since
�wall /�wall and V / �d�2 fluctuate around a mean value. Figure
6 shows the profiles of the averaged horizontal displacement
�x� of the particles versus their vertical position y for five
extreme values of �s and �r. These profiles are almost linear,
showing that the shear strain is uniform in the bulk.

We may also evaluate the average level of inertia in our
simple shear tests by evaluating the inertia parameter I de-
fined as �29–31�

I =
̇�d�

��wall/�
, �6�

where ̇ is the shear rate, �d� is the average grain size, and �
is the density. A sheared system is in a quasistatic state if I

�1. In all our tests we have ̇=1�10−6 /�t and �wall=1
�10−4���d� /��2. Hence, I�10−4, which means that our
sheared samples can reasonably be considered to be in a
quasistatic state.

III. SHEAR STRENGTH

The steady-state shear strength of a frictional granular
material is characterized by the coefficient of internal friction
�*, which should be calculated from an estimate of the stress
tensor �. The latter can be calculated at any stage of defor-
mation from the simulation data which give access to the
contact network and forces. We first compute the internal
moment tensor Mp for each grain defined by �32,33�

M��
p = 	

c�p

f�
c r�

c , �7�

where � and � represent the components in an orthonormal
reference frame, fc is the force exerted on particle p at con-
tact c, and rc is the position vector of the same contact. The
summation runs over all the contacts c of particle p. The
average stress tensor � in the volume V of the granular as-
sembly is given by

��� =
1

V
	
p�V

M��
p . �8�

This expression allows us to calculate the vertical normal
stress �yy and the tangential stress �=�xy 
�yx in the steady
state, and thus the coefficient of internal friction which in
simple shear is

�* =
�

�yy
. �9�

The dissipation rate in the steady state is simply given by
W=�*̇�yy.

We performed a large number of shear simulations for a
broad set of combinations of the friction coefficients. The
sliding friction coefficient �s was varied from 0 to 0.8 by
steps of 0.05, and, for each value of �s, the rolling friction
coefficient �r was varied from 0 to 0.6 by steps of 0.05.
Hence, a total number of 221 simulations, each for a total
cumulative shear strain of 5, were performed. For each com-
bination, the average value of �* was taken over the last
60% of the cumulative shear strain in order to get a repre-
sentative steady-state value of �*.

Figure 7�a� shows �* as a function of �s for several fixed
values of �r. We see that, for each value of �r, the coefficient
of internal friction �* increases as a function of �s and satu-
rates after a short transient at a saturation value that increases
with �r. This result generalizes a behavior previously estab-
lished in the case �r=0 �26�. Symmetrically, as shown in
Fig. 7�b�, for each value of �s ,�* increases and saturates as
a function of �r. These data also show that the internal fric-
tion coefficient in the absence of rolling resistance ��r=0�
cannot exceed 0.3. On the other hand, it takes a constant
value of 0.15 with rolling resistance in the absence of sliding
friction ��s=0�.

The contour map of �* is represented in Fig. 8 as a func-
tion of �s and �r for the whole set of our shear simulations.

2 3 410 5
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FIG. 5. �Color online� �a� Shear ratio �wall /�wall, and �b� nor-
malized volume of the packing V / �d�2, as functions of the shear
strain .
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0.4 0.6 0.80.20 1

FIG. 6. Profiles of the normalized averaged horizontal displace-
ment of the particles �x� /xwall, versus their normalized vertical po-
sition in the sample y /ywall, at the end of the shear test, for five
extreme combinations �see inset� of the two friction coefficients �s

and �r.

ESTRADA, TABOADA, AND RADJAÏ PHYSICAL REVIEW E 78, 021301 �2008�

021301-4



This map reveals a rather simple structure with an approxi-
mate symmetry with respect to the line �s=�r. We observe
again the saturation effect both with �s and �r, so that two
phases can clearly be distinguished on the contour map: �1� a
sliding phase in which �* depends only on �s, and �2� a
rolling phase in which �* depends only on �r. The transition
zone between these two phases, marked by a gray stripe in
Fig. 8, is narrow ��0.15�.

This two-phase behavior suggests that the system orga-
nizes itself so as to favor the mode of relative motion at the
contacts �sliding or rolling� for which the friction parameter
is lower. This behavior can be elucidated by considering the
populations of contacts depending on their rolling and slid-
ing status. There are four categories: �1� sliding-nonrolling
�s-nr�, �2� nonsliding-rolling �ns-r�, �3� sliding-rolling �s-r�

and �4� nonsliding-nonrolling �ns-nr�. The first three popula-
tions correspond to the “mobilized” contacts whereas the last
population defines the “interlocked” contact network. The
contribution of each population to the total shear stress can
be calculated from the general expression of the stress tensor
�i.e., Eq. �8�� by restricting the summation to the contacts
belonging to that population. Hence, partial friction coeffi-
cients �

s-nr
* , �

ns-r
* , �

s-r
* , and �

ns-nr
* can be defined for each

population. This is an additive decomposition so that

�* = �s-nr
* + �ns-r

* + �s-r
* + �ns-nr

* . �10�

Figure 9 shows the evolution of the partial friction coef-
ficients with �s for �r=0.3, and with �r for �s=0.4. The
contribution �

s-r
* of both sliding and rolling contacts is neg-

ligibly small. On the contrary, the contribution �
ns-nr
* of in-

terlocked contacts prevails except at low sliding or rolling
coefficients ��s�0.1 and �r�0.05� where the dominant
contribution comes from sliding or rolling contacts, respec-
tively. On the other hand, as �s increases, the contribution
�

s-nr
* of sliding-nonrolling contacts declines in favor of �

ns-r
*

which increases at the same time. Symmetrically, as �r in-
creases, the contribution �

ns-r
* of nonsliding-rolling contacts

declines in favor of �
s-nr
* which increases.

In order to characterize the dominant mode of relative
motion at the contacts, we consider these two last popula-
tions and define the parameter k by

k =
�s-nr

* − �ns-r
*

�s-nr
* + �ns-r

*
. �11�

This parameter varies in the range �−1,1� as a function of �s
and �r. The dominant mode is sliding if k�0 and rolling if

(b)

(a)
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FIG. 7. �Color online� Internal friction coefficient �* as a func-
tion of �s for several fixed values of �r �a�, and as a function of �s

for several fixed values of �r �b�.
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FIG. 8. �Color online� Contour map of the internal friction co-
efficient �* as a function of sliding and rolling friction coefficients
�s and �r. The gray stripe represents the transition zone between a
phase where �* depends only on the coefficient of sliding friction
�s and a phase where �* depends only on the coefficient of rolling
friction �r.
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FIG. 9. �Color online� Partial friction coefficients as a function
of �s for �r=0.3 �a�, and as a function of �r for �s=0.4 �b�.
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k�0. Figure 10 shows the contour map of k as a function of
�s and �r together with the contour lines of �*. We see that
the contour for k=0 matches closely the transition between
the sliding phase and the rolling phase. In other words, the
partial friction coefficients �

s-nr
* and �

ns-r
* reflect the effect of

the contact friction coefficients �s and �r with respect to �*.

IV. SOLID FRACTION AND COLUMN-LIKE
STRUCTURES

In this section, we study the packing structures in the
steady state as a function of �s and �r. The compactness of
the structure can be represented by the solid fraction � de-
fined by

� =
Vp

V
, �12�

where Vp is the total volume of the particles and V is the total
volume of the packing. Figure 11 shows the contour map of
� as a function of �s and �r. We see that, as for �*, at low
values of �s, the solid fraction � saturates with increasing �r.
However, the behavior is different at higher values of �s and
�r, breaking thus the expected symmetry between the two
phases.

In fact, in contrast to �*, the solid fraction as defined by
Eq. �12� comprises both load-carrying and floating particles.
But the fraction of floating particles is expected to increase
with �s and �r as a result of enhanced arching effect. We

thus consider the solid fraction �* of load-carrying particles
defined by

�* =
V

p
*

V
, �13�

where V
p
* is the volume of the load-carrying particles. Figure

12 shows the contour map of �* as a function of �s and �r.
Interestingly, the global aspect of this map is now symmetric
with respect to the two friction parameters. By comparison
with Fig. 8, we see that the highest levels of shear strength
correspond to the least compact structures. The reason is that
steady state shearing implies larger free volumes accessible
to the particles when the relative degrees of freedom between
particles are restrained due to higher rolling or sliding con-
tact friction. Remark that the solid fraction �* can be as
small as 0.3 and even lower �see the contour map in Fig. 12�.

Low values of solid fraction �* coincide with the forma-
tion of column-like structures, i.e. long chains of particles
with only two contacts. Figure 13 shows snapshots of the
load-carrying contact network and normal forces in two
packings denoted S1 and S2. The coefficients of friction are
�s=0.4 and �r=0 in S1, and �s=0.7 and �r=0.5 in S2. We
observe two important differences between the load-carrying
structures in these packings. �1� In packing S1 almost all
particles belong to the load-carrying network, whereas in S2
most particles are floating and the load-carrying particles
form columns. �2� In packing S1 the contacts carrying large
forces �strong contacts� form chainlike structures propped by
contacts carrying small forces �weak contacts�. In contrast, in
packing S2, the force chains are not propped everywhere.
This aspect is analyzed in more detail in the following sec-
tion.

V. STRESS TRANSMISSION

A. Probability density functions

In close correlation with shear strength and solid fraction,
the stress transmission is strongly influenced by rolling and
sliding friction. Figure 14 displays the probability density
functions Pn of normal forces fn in the packings S1 and S2.
The data are cumulated from several snapshots in the steady
state, corresponding to a total number of 1.3�106 contact
forces for packing S1 and of 0.4�106 contact forces for

sliding phase

rolling phase
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1 0.5 0 -0.5
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FIG. 10. �Color online� Contour map of the parameter k �see
text� as a function of the contact friction coefficients �s and �r.
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FIG. 11. �Color online� Contour map of the solid fraction � as a
function of �s and �r.

0.4 0.6 0.80.20

0.4

0.6

0.2

0

0.30.6 0.5 0.40.7

FIG. 12. �Color online� Contour map of the solid fraction �* of
the load-carrying particles as a function of �s and �r.

ESTRADA, TABOADA, AND RADJAÏ PHYSICAL REVIEW E 78, 021301 �2008�

021301-6



packing S2. As often observed in granular media �34,35�, we
find that the function Pn is characterized by an exponential
falloff for the forces above the average force �fn� and a
power-law distribution for the forces below �fn�:

Pn�fn� � �� fn

�fn�
−�n

, fn � �fn� ,

e�n�1−fn/�fn��, fn � �fn� ,
� �14�

with �n�−0.17 and �n�1.8 in S1, and �n�0.37 and �n
�0.81 in S2. Hence, the normal force distribution Pn in
packing S2 �with �r=0.5� is considerably broader in the
range of strong forces, and the fraction of weak forces di-
verges as fn→0.

Figure 15 shows the probability density function Pt of
friction forces f t, which is also characterized by an exponen-
tial falloff for the forces above the average force ��f t�� and a
power-law distribution for the forces below ��f t��:

Pt�f t� � �� �f t�
��f t��

−�t

, �f t� � ��f t�� ,

e�t�1−�f t�/��f t���, �f t� � ��f t�� ,
� �15�

with �t�0.17 and �t�1.1 in S1, and �t�0.52 and �t
�0.57 in S2.

The probability density function PM of contact torques is
defined only in the packing S2 with nonzero rolling resis-
tance. As shown in Fig. 16, it can be also be described by

PM�M� � �� �M�
��M��

−�M

, �M� � ��M�� ,

e�M�1−�M�/��M���, �M� � ��M�� ,
� �16�

with �M �0.66 and �M �0.49.
These distributions show clearly the larger inhomogeneity

of stress transmission in a granular packing in the presence
of rolling resistance. A systematic investigation of force dis-
tributions will be reported elsewhere �36�. In addition, Figs.

FIG. 13. �Color online� Snapshots of �a� the load-carrying net-
work in packing S1, �b� the normal forces in packing S1, �c� the
load-carrying network in packing S2, and �d� the normal forces in
packing S2. In �a� and �c� the particles that participate in the load-
carrying network are in gray, and the black lines represent the con-
tact network. In �b� and �d� the black lines represent strong forces
�fn� �fn�, where �fn� is the mean normal force� and red �gray� lines
represent weak forces �fn� �fn��. Line thickness is proportional to
the force magnitude.
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FIG. 14. �Color online� Probability density functions Pn of nor-
mal forces fn in the packings S1 and S2 in log-log �a� and log-linear
�b� scales. The dashed lines are guides to the eyes.
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FIG. 15. �Color online� Probability density functions Pt of tan-
gential forces f t in the packings S1 and S2 in log-log �a� and log-
linear �b� scales. The dashed lines are guides to the eyes.
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14–16 show that, independently of the friction coefficients,
the contacts can be classified in two sets characterized by a
different distribution of contact forces. We will analyze this
bimodal character of the contact network in the next section.

B. Strong and weak force networks

As mentioned in the previous section, it is a well-known
feature of sheared granular media that the contacts belong to
two coexisting networks termed strong and weak networks
following Radjai et al. �37�. Moreover, these two networks
are known to have different topologies and play different
mechanical roles in the system. The contacts in the strong
network correspond to chainlike structures distinctly ob-
served in photoelastic images and called force chains; their
function is to sustain the deviatoric load imposed on the
system. The weak network is less visible, but its contacts are
more important in number and have the essential function of
propping the force chains. This property can be evidenced by
considering the anisotropy of contact orientations. The strong
contacts are oriented mainly along the major principal stress
direction whereas the weak contacts are, on average, perpen-
dicular. The average normal force �fn� is generally found to
be the approximate characteristic force differentiating be-
tween the two types of contacts. Here, we would like to
study the effect of rolling friction on the nature of these two
networks.

Let us consider the distribution P���� of contact orienta-
tions �� �0,��. Fig. 17 displays P� in polar coordinates for
strong and weak contacts in packings S1 with �s=0.4 and
�r=0, and S2 with �s=0.7 and �r=0.5. We see that in the
packing S1, where there is no rolling resistance, the strong
network is indeed more anisotropic than the weak network

and the privileged directions of the two networks �longer
axis of each diagram� are orthogonal. In contrast, in packing
S2, where both rolling and sliding friction coefficients are
high, the privileged directions of the two populations are
similar and coincide with the major principal stress direction
��=3� /4. This observation suggests that the function of the
weak contacts in the packing S2 is no longer to prop the
force chains laterally, implying that the nature of the weak
network is fundamentally different in the two packings. In
the following, we analyze this point in terms of the anisotro-
pies of the distributions of contact orientations.

The anisotropy of the distributions can be calculated by
expanding P� on the Fourier basis. Since P� is � periodic,
we have

P��� =
1

�
�1 + a cos 2�� − �a� + b cos 4�� − �b� + ¯ � ,

�17�

where the coefficients a ,b , . . . are the anisotropy parameters
of increasing order and the angles �a ,�b , . . . are the phases.

Generally the first-order anisotropy a captures the main
trend. It can be calculated from the lowest-order fabric tensor
F defined by

F�� =
1

Nc
	
c�V

n�
c n�

c , �18�

where � and � represent the components in an orthonormal
reference frame, nc is the normal unit vector at contact c, and
the summation runs over all contacts c in the control volume
V. It is easily shown that

a = 2�F1 − F2� , �19�

where F1 and F2 are the principal values of F. By definition,
the anisotropy a is zero or positive. For the analysis of the
anisotropy in strong and weak networks, or in subsets of
contacts, where the directions �a are not similar, it is more
convenient to introduce the phase factor by multiplying a by
cos 2��a−���, where �� is the direction of the major princi-
pal stress. Hence, we define the “signed” anisotropy a� by

a� = 2�F1 − F2�cos 2��a − ��� . �20�

This anisotropy is positive when the two major principal
directions are in phase, i.e., when ��a−����� /4, otherwise
the anisotropy is negative. In our simple shear tests, we have
��=3� /4.
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FIG. 16. �Color online� Probability density function PM of con-
tact torques M in the packing S2 in log-log �a� and log-linear �b�
scales. The dashed lines are guides to the eyes.
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FIG. 17. �Color online� P� in polar coordinates for strong �black
line� and weak �red �gray� line� contacts in packings S1 with �s

=0.4 and �r=0 �a�, and S2 with �s=0.7 and �r=0.5 �b�. The gray
circle represents a reference isotropic distribution.
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In order to analyze the anisotropy of force networks, we
consider the subsets S��� of contacts carrying a normal force
level �= fn / �fn����−�� ,�+��� so that each contact belongs
to only one subset. The weak and strong networks corre-
spond to ���1S��� and ���1S���, respectively. The aniso-
tropy a���� of each set S��� can be calculated from the defi-
nition of the fabric tensor by restricting the summation to the
contacts belonging to this set:

F����� =
1

Nc��� 	
c�S���

n�
c n�

c , �21�

where Nc
� is the cardinal of the set S���.

Figure 18 shows a���� in packings S1 with �s=0.4 and
�r=0, and S2 with �s=0.7 and �r=0.5. We see that in the
packing S1, where there is no rolling resistance, the anisotro-
pies at weak force levels are negative �corresponding to a
privileged orientation along the minor principal stress direc-
tion� up to a point �0 where a���� changes sign and becomes
positive. In contrast, in the packing S2, where there is rolling
resistance, the anisotropies at both weak and strong force
levels are positive, showing that, on average, the privileged
orientation of all subsets of contacts is the same. This shows
that all the contacts in the weak network do not play the
same role in the system. Rather, the propping role seems to
be a property of a subnetwork of contacts inside the weak
network carrying forces below a characteristic value �0�fn�.
Interestingly, this “propping network” of contacts is com-
pletely absent in the limit of high rolling resistance and roll-
ing friction �i.e., in packing S2�.

To push this analysis further, let us consider the contribu-
tion �*��� of each subset S��� of contacts to the friction
coefficient �*, which is given by

�*��� =
����

�
, �22�

where ���� is the tangential stress calculated from the defi-
nition of the stress tensor by restricting the summation to the
contacts belonging to S��� and � is the normal stress when
considering all contacts. Figure 19 shows ���� in packings
S1 and S2. We see that in the packing S1, where there is no
rolling resistance, the contribution of the contacts with force
levels ���0 to the strength of the packing is nearly zero, and

the contribution of the contacts with force levels ���0 to �*

is positive. This means that the deviatoric load applied to the
system is totally sustained by the contacts carrying forces
above �0�fn�. In contrast, in the packing S2, where there is
rolling resistance, the contribution of all contacts, regardless
of their force level, is positive, which means that, in this
packing, the function of the weak network is also to sustain
the deviatoric load applied to the system.

Figure 20 shows the contour map of the characteristic
force level �0 as a function of �s and �r. As �s and �r
increase, �0 decreases and even vanishes for large values of
friction coefficients. This is consistent with the observation
that the force chains are gradually replaced by columns of
particles which do not need to be propped. However, the
total vanishing of the propping network �i.e., �0=0� takes
place at �s=0.6 and �r=0.25, and thus it cannot occur with-
out rolling friction. This transition reflects a qualitative
change in the condition of local force and torque balance in
the presence of interlocking.

VI. SUMMARY AND DISCUSSION

In summary, by means of contact dynamics simulations,
we investigated a class of granular material involving inter-
locking actions between the particles. Interlocking was mod-
eled as a rolling friction law relating the contact torque to the
relative rotation between two particles with a rolling friction
coefficient �r analogous to the sliding friction coefficient �s.
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FIG. 18. �Color online� Signed anisotropy a� as a function of the
force level � in packings S1 with �s=0.4 and �r=0, and S2 with
�s=0.7 and �r=0.5.
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FIG. 19. �Color online� Contribution to the coefficient of fric-
tion �* as a function of the force level � in packings S1 with �s

=0.4 and �r=0, and S2 with �s=0.7 and �r=0.5.
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FIG. 20. �Color online� Contour map of �0 �see text� as a func-
tion of �s and �r.
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A large number of 2D polydisperse numerical samples were
sheared for a broad range of friction parameters �s et �r and
the steady state was analyzed in terms of shear strength,
fabric properties, and force transmission.

We found an interesting symmetry between the effects of
�s and �r on the macroscopic response of the packing. In
particular, the coefficient of internal friction �* saturates as a
function of �s with a saturation value that increases with �r,
and, symmetrically, it saturates as a function of �r with a
saturation value that increases with �s. As a result, two dis-
tinct phases can be distinguished in which �* is controlled
by either �s or �r. This suggests that the dominant mode of
relative motion at the contacts �sliding or rolling� is the one
which minimizes the coefficient of internal friction. This be-
havior was shown to be consistent with the relative contri-
butions of sliding and rolling contacts to �*.

These findings are in agreement with those reported in
�7,20,38�, stating that contact rolling plays a major role in the
shear strength of granular media. Nevertheless, our results
show quantitatively when contact rolling prevails. Contact
rolling is the dominant mode when �s is large compared to
�r, but contact sliding is the dominant mode when �r is large
compared to �s. The reason is that high values of one of the
two friction coefficients tend to block the corresponding de-
gree of freedom enhancing thus the alternative mode of rela-
tive motion at the contacts.

We also found that the combined effect of sliding friction
and interlocking strongly affects the microstructure of the
packing. In particular, high values of �s and �r enhance the
arching effect, causing the force carrying backbone to take
an increasingly columnar aspect. The formation of these col-
umns affects also the mechanical role played by the weak
network. A transition occurs for particular values of �s and
�r to a phase where the fraction of the weak network that
props the force chains �i.e., the propping network� is com-
pletely absent ��0=0�, and both networks, weak and strong,
contribute to sustain the deviatoric load applied to the sys-
tem. In this phase, columns are the dominant force transmit-
ting structure, and, as a consequence of an enhanced arching
effect, the solid fraction of the load-carrying backbone can
be extremely low, e.g., 0.3.

We also presented the probability distributions of contact
forces and torques. These distributions were shown to follow
a power law in the range of weak forces and fall off expo-
nentially for strong forces. Another important point is that
the vanishing of the propping network does not imply a de-
crease in the fraction of contacts carrying weak forces. Ac-
tually, the proportion of weak contacts increases, even if
their mechanical role evolves with friction coefficients. This
is a consequence of significant changes in the local equilib-
rium conditions as the contacts are allowed to exert torques.

It is evident that the complex interactions between par-
ticles in real granular materials cannot be fully captured by a
simple model of circular particles with sliding and rolling
friction at their contacts. Nevertheless, we think that some of
the trends presented in this paper, such as the occurrence of a
dominant mode at the contacts, the formation of new struc-
tures of force transmission and the changes in the mechanical
role of the weak network, are robust features of granular
media involving rolling resistance. We believe that these
findings are relevant for a better understanding of the role
played by the local thresholds on the rich behavior of
sheared granular materials.

An important issue not tackled in this paper concerns the
effect of rolling resistance with respect to particle displace-
ments and rotations between successive equilibrium states.
Clearly, as shown in Fig. 5, the particle motions are increas-
ingly fluctuating as rolling friction is higher. This shows that
the transition is increasingly dynamic due to the breakdown
of the supporting structures shown in Fig. 13. These kine-
matic aspects involving the formation and breakdown of lo-
cal rigid structures, spatial correlations of nonaffine particle
velocities, dynamic rearrangements, and dissipation of ki-
netic energy are presently under investigation.
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